Home
Class 14
MATHS
If -tan theta = (sin13^@ + cos 13^@)/(si...

If `-tan theta = (sin13^@ + cos 13^@)/(sin13^@ - cos13^@)` , find `theta` ?

A

`58^@`

B

`-58^@`

C

`63^@`

D

`-63^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(-\tan \theta = \frac{\sin 13^\circ + \cos 13^\circ}{\sin 13^\circ - \cos 13^\circ}\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ -\tan \theta = \frac{\sin 13^\circ + \cos 13^\circ}{\sin 13^\circ - \cos 13^\circ} \] ### Step 2: Divide numerator and denominator by \(\cos 13^\circ\) To simplify the right-hand side, we divide both the numerator and the denominator by \(\cos 13^\circ\): \[ -\tan \theta = \frac{\frac{\sin 13^\circ}{\cos 13^\circ} + \frac{\cos 13^\circ}{\cos 13^\circ}}{\frac{\sin 13^\circ}{\cos 13^\circ} - \frac{\cos 13^\circ}{\cos 13^\circ}} \] This simplifies to: \[ -\tan \theta = \frac{\tan 13^\circ + 1}{\tan 13^\circ - 1} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ -\tan \theta (\tan 13^\circ - 1) = \tan 13^\circ + 1 \] Expanding this, we have: \[ -\tan \theta \tan 13^\circ + \tan \theta = \tan 13^\circ + 1 \] ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ \tan \theta + \tan \theta \tan 13^\circ = \tan 13^\circ + 1 \] Factoring out \(\tan \theta\) on the left side: \[ \tan \theta (1 + \tan 13^\circ) = \tan 13^\circ + 1 \] ### Step 5: Solve for \(\tan \theta\) Now, we can isolate \(\tan \theta\): \[ \tan \theta = \frac{\tan 13^\circ + 1}{1 + \tan 13^\circ} \] This simplifies to: \[ \tan \theta = \tan(45^\circ + 13^\circ) \] Thus, we have: \[ \tan \theta = \tan 58^\circ \] ### Step 6: Finding \(\theta\) Since \(\tan \theta = \tan 58^\circ\), we can conclude: \[ \theta = 58^\circ + n \cdot 180^\circ \quad (n \in \mathbb{Z}) \] For the principal value, we take: \[ \theta = 58^\circ \] ### Final Answer \(\theta = 58^\circ\) ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta=12/13 find the value of (sin^2 theta-cos^2 theta)/(2sin theta cos theta)xx1/(tan^2 theta)

If cosec theta =13/12 , then the value of (2 sin theta -3cos theta )/(4sin theta -9 cos theta ) is: यदि cosec theta = 13/12 , तो (2 sin theta -3cos theta )/(4sin theta -9 cos theta ) का मान ज्ञात करें

If sec theta = (13)/(5) then (2 sin theta - 3 cos theta )/( 4 sin theta - 9 cos theta) is equal to

Evaluate the following: cos 47^@ cos 13^@-sin 47^@ sin 13^@

If theta and phi lie in the first quadrant such that sin theta =(8)/(17) "and cos " phi =(12)/(13) find the values of (i) " sin"(theta- phi) " "(ii) " cos " (theta + phi) " " (iii) " tan " (theta - phi)

If theta lies in the fourth quadrant and cos=(5)/(13) ,find the value of: (i) "sin" theta and "tan" theta (ii) (13 sin theta+5 sec theta)/(5 tan theta+6 "cosec"theta)

If 5 cos theta+12 sin theta=13, 0^@ यदि 5 cos theta+12 sin theta=13, 0^@< theta <90^@ , तो sin theta का मान क्या है?