Home
Class 14
MATHS
If alpha,beta and gamma are angles of a ...

If `alpha,beta` and `gamma` are angles of a triangle then `sinalpha +sinbeta+singamma` is equal to -

A

`2"cos"alpha/2"cos"beta/2"cos"gamma/2`

B

`8cosalpha cosbetacosgamma`

C

`cos((alpha+beta)/2)cos((beta+gamma)/2)`

D

`4"cos"alpha/2 "cos"beta/2 "cos"gamma/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin \alpha + \sin \beta + \sin \gamma \) where \( \alpha, \beta, \) and \( \gamma \) are the angles of a triangle. ### Step-by-Step Solution: 1. **Understanding the Angles of a Triangle**: - The sum of the angles in any triangle is \( 180^\circ \). - Therefore, we can write: \[ \alpha + \beta + \gamma = 180^\circ \] 2. **Using the Sine Function**: - We need to find \( \sin \alpha + \sin \beta + \sin \gamma \). - We can use the sine addition formula or properties of sine to express one of the angles in terms of the others. 3. **Expressing One Angle**: - Let's express \( \gamma \) in terms of \( \alpha \) and \( \beta \): \[ \gamma = 180^\circ - \alpha - \beta \] 4. **Applying the Sine Function**: - Now, we can substitute \( \gamma \) into the sine function: \[ \sin \gamma = \sin(180^\circ - \alpha - \beta) = \sin(\alpha + \beta) \] - Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] 5. **Combining the Sine Values**: - Now we can write: \[ \sin \alpha + \sin \beta + \sin \gamma = \sin \alpha + \sin \beta + \sin(\alpha + \beta) \] - Substituting for \( \sin(\alpha + \beta) \): \[ = \sin \alpha + \sin \beta + \sin \alpha \cos \beta + \cos \alpha \sin \beta \] 6. **Simplifying the Expression**: - Combine like terms: \[ = \sin \alpha (1 + \cos \beta) + \sin \beta (1 + \cos \alpha) \] 7. **Conclusion**: - The expression \( \sin \alpha + \sin \beta + \sin \gamma \) does not simplify to a constant value but depends on the specific angles \( \alpha, \beta, \) and \( \gamma \). - However, for specific cases (like \( \alpha = 90^\circ, \beta = 90^\circ, \gamma = 0^\circ \)), we can evaluate it to find specific values. ### Final Answer: Thus, \( \sin \alpha + \sin \beta + \sin \gamma \) does not have a fixed value but can be evaluated based on the angles of the triangle.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

If the centroid of a triangle with vertices (alpha, 1, 3), (-2, beta, -5) and (4, 7, gamma) is the origin then alpha beta gamma is equal to …..........

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions,then triangle is necessarily a.equilateral b.isosceles c.right angled

If alpha,beta,gammain[0,pi] and alpha,beta,gamma are in AP, then (sinalpha-singamma)/(cosgamma-cosalpha) is equal to

The angles alpha , beta , gamma of a triangle satisfy the equations 2 sin alpha + 3 cos beta = 3sqrt(2) and 3sin beta + 2cos alpha = 1 . Then angle gamma equals

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

If the lines x(sinalpha+sinbeta)-ysin(alpha-beta)=3 and x(cosalpha+cosbeta)+ycos(alpha-beta)=5 are perpendicular then sin2alpha+sin2beta is equal to:

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is