Home
Class 12
MATHS
lim(n rarr oo)((n!)/(n^(n)))^(1/n)...

`lim_(n rarr oo)((n!)/(n^(n)))^(1/n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)(((n)/(n))^(n)+((n-1)/(n))^(n)+......+((1)/(n))^(n)) equals

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=