Home
Class 7
MATHS
Simplify the expression: (a^(2)bx+bc)/...

Simplify the expression:
`(a^(2)bx+bc)//(a^(2)bx+bc-1+1)`

A

1

B

`(ax+1)//bc`

C

`-1`

D

none of the above

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2020-21 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

Factoris the expression. ax ^(3) - bx ^(2) + cx

If a, b, c are distinct positive real numbers such that the quadratic expression Q_(1)(x) = ax^(2) + bx + c , Q_(2)(x) = bx^(2) + cx + a, Q_(3)(x) = cx^(2) + x + b are always non-negative, then possible integer in the range of the expression y = (a^(2)+ b^(2) + c^(2))/(ab + bc + ca) is

Simplify (2a^(2)b-3bc)-(a^(2)b+5bc-ca)

The value of the expression (1-ax)(1+ax)^(-1)(1+bx)^((1)/(2))(1-bx)^(-(1)/(2)) at x=a^(-1)(2(a)/(b)-1)^((1)/(2))

The value of the expression (1-ax)(1+ax)^(-1)(1+bx)^((1)/(2))(1-bx)^(-(1)/(2)) at x=a^(-1)(2(a)/(b)-1)^((1)/(2)), is: a.dependent on both a and b b.1 c.;-1

(1) The minimum value of the quadratic expression x^(2)+bx+c is (2) if maximum value at x=a then a=

If x^(2)+px+1 is a factor of the expression ax^(3)+bx+c ,then

lim_(xrarr1) (ax^(2)+bx+c)/(cx^(2)+bx+a)a+b+cne0

Given that a,b,c are distinct real numbers such that expressions ax^(2)+bx+c,bx^(2)+cx+aandcx^(2)+ax+b are always non-negative.Prove that the quantity (a^(2)+b^(2)+c^(2))/(ab+bc+ca) can never lie inn (-oo,1)uu[4,oo)

The expression a^(2)x^(2)+bx+1 will be positive for all x in R if