Home
Class 11
MATHS
lim(n->oo) frac{n}{n^2+1}+frac{n}{n^2+2}...

`lim_(n->oo) frac{n}{n^2+1}+frac{n}{n^2+2}+...........+frac{n}{n^2+n}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)2^(n-1)sin(a/2^n)

if y= x^m then Y n is equal to: (A) frac{m!}{m-n!} x^(m-n) (B) frac{m!}{n-m!} x^(m-n) (C) frac{n!}{m+n!} x^(m+n) (D) frac{n!}{n-m!} x^(m-n)

Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]

lim_(n->oo)sin(x/2^n)/(x/2^n)

frac {d^ny}{dx^n} (x^2e^(2x))

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

lim_(n rarr oo)2^(1/n)

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)