Home
Class 12
MATHS
(dy)/(dx)=log(a^(x)b^(x))...

`(dy)/(dx)=log(a^(x)b^(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If =(x^(2))/(2)+(x sqrt(x^(2)+1))/(2)+log sqrt(x+sqrt(x^(2)+1)) prove that 2y=x(dy)/(dx)+log((dy)/(dx))

solve (dy)/(dx)=log x

(dy)/(dx)=(x+y)ln(x+y)-1

(i) x(dy)/(dx)+y=log x

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If y=a^(a^(x)) and (dy)/(dx)=y*a^(x)(log a)^(n) then the value of n is

Find (dy)/(dx) , if y =(log x)^(x) + (x)^(log x)

If log(xy)x^(2)+y^(2)," then: "((dy)/(dx))((dx)/(dy))=

Solve x(dy)/(dx)+y=y^(2)ln x