Home
Class 10
MATHS
9. log(a+b)+log(a-b)-log(a^2-b^2) =? ...

9. `log(a+b)+log(a-b)-log(a^2-b^2)` =? a) 0 b)1 c) `(a^2-b^2)` d)`(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log(a+c)+log(a+c-2b)=2log(a-c) then

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degree <3 , then intg(x)dx=|1af(a)log|x-a|1bf(b)log|x-b|1cf(c)log|x-c||-:|1a a^2 1 bb^2 1 cc^2|+k (dg(x))/(dx)=|1af(a)log""(x-a)^2 1bf(b)"log"(x-b)^2 1cf(c)"log"(x-b)^2|-:|a^2a1b^2b1c^2c1| (dg(x))/(dx)=|1af(a)log""(x-a)^(-2)1bf(b)"log"(x-b)^(-2)1cf(c)"log"(x-b)^(-2)|-:|1a a^2 1bb^2 1cc^2| intg(x)dx=|1af(a)"log"|x-a|1bf(b)"log"|x-b|1cf(c)"log"|x-c||-:|a^2a1b^2b1c^2c1|+k

If log_(5)((a+b)/(3))=(log_(5)a+log_(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2)b^(2))=

Evaluate: log_(a^2) b-:log_sqrt(a)(b)^2

The minimum value of 'c' such that log_(b)(a^(log_(2)b))=log_(a)(b^(log_(2)b)) and log_(a) (c-(b-a)^(2))=3 , where a, b in N is :

If (log)_(10)2=a ,(log)_(10)3=bt h e n(log)_(0. 72)(9. 6) in terms of a and b is equal to (a) (2a+3b-1)/(5a+b-2) (b) (5a+b-1)/(3a+2b-2) (c) (3a+b-2)/(2a+3b-1) (d) (2a+5b-2)/(3a+b-1)

Prove that : (i) (log a)^(2) - (log b)^(2) = log((a)/(b)).log(ab) (ii) If a log b + b log a - 1 = 0, then b^(a).a^(b) = 10

int_2^4((log)_x2-(((log)_2 2)^2)/(ln2))dx= 0 (b) 1 (c) 2 (d) 4

Let (log a)/( b-c) = (logb)/(c-a) = (log c)/(a-b) STATEMENT 1: a^(a) b^(b) c^(c) = 1 STATEMENT 2: a^(b+c) b^(c +a) c^(a + b) = 1