Home
Class 11
MATHS
3) The value of i+i^2+i^3+i^4...

3) The value of `i+i^2+i^3+i^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of i + i^(2) + i^(3) + i^(4) is ________

The value of i^2 + i^4 + i^6 + i^8.... upto (2n+1) terms , where i^2 = -1, is equal to:

(1) The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is

The value of (1+i)^4+(1-i)^4 is

The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is a. 2 b. 0 c. 1 d. i

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

Find the value of 1+i^2+i^4+i^6++i^(2n)

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

The value of (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))-1\ is a. -1 b. -2 c. -3 d. -4

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|