Home
Class 12
MATHS
lim(h->oo) (sqrt(9+h)-3)/h...

`lim_(h->oo) (sqrt(9+h)-3)/h`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim _(h -> 0) (sqrt(x+h) - sqrtx)/h

Let lim_(x->oo) sqrt((x-cos^2x)/(x+sinx)) and I_2 = lim_(h->0^+) int_(-1)^1 hdx/(h^2+x^2) . Then

If f(9)=9,f^(prime)(9)=4,t h e n("lim")_(x->9)(sqrtf(x)-3)/(sqrtx-3)= ___________.

Write the value of (lim)_(x->-oo)(3x+sqrt(9x^2-x))

lim_(h rarr oo)log(sqrt(h-1)+sqrt(h))

Evaluate lim_(hto0)(sqrt(x+h)-sqrt(x))/(h)

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(x->oo)(sqrt(x+sqrt(x))-sqrt(x)) equals

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals