Home
Class 12
MATHS
lim(n->oo) [sqrt(n^2+n+1)-n]...

`lim_(n->oo) [sqrt(n^2+n+1)-n]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

lim_(n->oo) nsin(1/n)

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

Evaluate: lim_(n->oo)n{sqrt((1-cos(1/n))sqrt((1-cos(1/n))sqrt((1-cos(1/n))........oo)))}dot

Evaluate: lim_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

lim_(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals