Home
Class 12
MATHS
lim(n->0) (2^n-1)/(sqrt (1+n)-1)...

`lim_(n->0) (2^n-1)/(sqrt (1+n)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

Evaluate: lim_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)) ,where n in N

lim_(n->oo)2^(n-1)sin(a/2^n)

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

Evaluate lim_(ntooo) (-1)^(n-1)sin(pisqrt(n^(2)+0.5n+1)),"where "nin N

Evaluate lim_(ntooo) n^(2){sqrt((1-"cos"(1)/(n))sqrt((1-"cos"(1)/(n))sqrt((1-"cos"(1)/(n))...)))} .

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]