Home
Class 12
MATHS
lim(n->0) (sqrt(2+n) - sqrt2)/n...

`lim_(n->0) (sqrt(2+n) - sqrt2)/n`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

Evaluate the following limit: (lim)_(n->oo)(sqrt(x+1)-sqrt(x))sqrt(x+2)

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

Evaluate: lim_(n->oo)n{sqrt((1-cos(1/n))sqrt((1-cos(1/n))sqrt((1-cos(1/n))........oo)))}dot

In a series of 2n observations, half of them equal a end remaining half equal -a. If the S.D. of the observationsis 2, then |a| equals (1) 1/n (2) sqrt2 (3) 2 (4) sqrt2/n