Home
Class 12
MATHS
3) dy/dx+2xy=e^(-x^2)...

3) `dy/dx+2xy=e^(-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

xy-dy/dx=y^3e^(-x^2)

(dy)/(dx)+2xy=x^(3)

dy/dx=(2xy)/(x^2-1-2y)

(a) dy/dx = (xy)/(x^2+y^2)

Observe the following statement . I . If dy + 2xy dx = 2e^(-x^(2))dx , then ye^(x^(2)) = 2x + C II. If ye^(x^(2)) - 2x = C , "then" dx = (2e^(-x^(2))) - 2xy )dy Which is/are correct statemant ?

Solution of xy-(dy)/(dx)=y^(3)e^(-x^(2)) is

The integrating solution of differential equation (dy)/(dx) = e^((x^(2))/(2)) + xy is

General solution of (dy)/(dx)+(2xy)/(1+x^(2))=0 is

x^2(dy/dx)^2-2xy dy/dx+2y^2-x^2=0