Home
Class 12
MATHS
(dy)/(dx)+(1)/(x)y=sin x...

`(dy)/(dx)+(1)/(x)y=sin x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equations (dy)/(dx)+(1)/(x)y = cos x+(sin x)/(x), " " x gt 0 .

x(dy)/(dx)+y=sin x

Write integrating factor differential equations (dy)/(dx)+(1)/(1+x^2)y= sin x

Ify,=sqrt(((1+cos x)/(2))), provethat (dy)/(dx)=-(1)/(2)(sin x)/(2) If y,=sqrt((1+sin x)/(1-sin x)), prove that cos x(dy)/(dx)=y

(dy)/(dx)+y=sin x

(dy/dx)+(y/x)=sin x^(2)

The solution of the differential equation x^(2)(dy)/(dx)cos((1)/(x))-y sin((1)/(x))=-1, where y rarr-1 as x rarr oo is

The degree and order of differential equatiion (x+y(dy)/(dx))^((1)/(2))=(x sin x((dy)/(dx))^(2)+y)/(((dy)/(dx))^(3)) is :

(dy) / (dx) -y = sin x

(dy)/(dx)=sin(x-y)