Home
Class 12
MATHS
lim(x->oo) log x/ x...

`lim_(x->oo) log x/ x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)sinx/x =

lim_(x->oo) xsin(2/x)

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) none of these

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

lim_(x->oo)[sinx/x]

lim_(x->oo) (sinx/x) =

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

lim_(x rarr oo)((log x)/(x))^(1/x)