Home
Class 12
MATHS
Verify if LHS is equal to RHS ? lim( ...

Verify if LHS is equal to RHS ?

`lim_( n -> oo ) ( n/(n + 1 ) . ( n + 1 )/n ) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))

lim_ (n rarr oo) ((n + 2)! + (n + 1)!) / ((n + 3)!)

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_ (n rarr oo) [(n!) / (n ^ (n))] ^ ((1) / (n))

lim_ (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals

lim_(n rarr oo)((-1)^(n)n)/(n+1)