Home
Class 12
MATHS
Show that : lim(n rarr oo)(1)/(r^(n))...

Show that :

`lim_(n rarr oo)(1)/(r^(n))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_ (n rarr oo) (1) / (1 + x ^ (n))

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo)(((-1)^(n)n)/(n^(2)+1))=0