Home
Class 12
MATHS
I=int dx/(acosx+bsinx)^2; a >0 and b >0...

`I`=`int dx/(acosx+bsinx)^2`; a >0 and b >0

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2)dx/(acosx+bsinx);a,b>0

Evaluate the following integral: int_0^(pi//2)(dx)/(acosx+bsinx)a ,\ b >0

int_0^L (dx)/(ax + b) =

acosx+bsinx lies between

int_0^pi dx/(1-2acosx+a^2), alt1 is equal to (A) (pialog2)/4 (B) (4pi)/(2-a^2) (C) pi/(1-a^2) (D) none of these

int(a+bsinx)/((b+asin x)^(2))dx

Simplify tan^(-1)[(acosx-bsinx)/(bcosx+asinx)], if a/btanx > -1 .

Let f(x) be a function such that ("lim")_(xvec0)(f(x))/x=1 and ("lim")_(xvec0)(x(1+acosx)-bsinx)/((f(x))^3)=1 , then b-3a is equal to

The differential equation of the family of curves y=e^x(Acosx+Bsinx), where A and B are arbitrary constants is

The value of int_0^(pi//2)cosx\ e^(sin x)dx\ i s a. 1 b. e-1 c. 0 d. -1