Home
Class 12
MATHS
tan^(-1)(1/(2))+tan^(-1)(x+1)=tan^(-1)(x...

`tan^(-1)(1/(2))+tan^(-1)(x+1)=tan^(-1)(x^(2)+x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)((2)/(3))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

tan^(-1)(1/(a-1))=tan^(-1)(1/x)+tan^(-1)((1)/(a^(2)-x+1))

Solve for x : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)(8/(79)) , x >0

If xy=1+a^(2) then show that tan^(-1)((1)/(a+x))+tan^(-1)((1)/(a+y))=tan^(-1)((1)/(a)),x+y+2a!=0

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=