Home
Class 12
MATHS
I=int(tan^(-1)x+cot^(-1)x)dx...

`I=int(tan^(-1)x+cot^(-1)x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(tan^(-1)x cot^(-1)x)/(1+x^(2))dx

int(tan^(-1)x+cot^(-1)x)/(1+x^(2))dx

Statement I int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C Statement II (d)/(dx) (a^(x)+C)=a^(x) ln a

Evaluate (i) int_(-2)^(1)(tan^(-1)x+cot^(-1).(1)/(x))dx (ii) int_(2)^(4)sqrt(t-1-2sqrt(t-2))dt .

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

int x^(51)(tan^(-1)x+cot^(-1)x)dx=

int(1+tan^(2)x)/(1+cot^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) then (dy)/(dx)=

l=int_(-2)^(1)(tan^(-1)x+"cot"^(-1)(1)/(x))dx is equal to