Home
Class 12
MATHS
(dy)/(dx)+yx=y^2 e^(x^2 /2)sin x...

`(dy)/(dx)+yx=y^2 e^(x^2 /2)sin x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(x^2+e^(x))/(y)

Solve the differential equation (dy)/(dx) =(e^(x)(sin^(2)x+sin 2x))/(y (2logy+1)).

sin x(dy)/(dx)+y=y^(2)

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is

(dy/dx)+(y/x)=sin x^(2)

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

(dy)/(dx)=e^(-y)*sin x+e^((x-y))

(dy) / (dx) = e ^ (xy) (e ^ (yx) -e ^ (y))

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x