Home
Class 11
MATHS
solve log(7)(2^(x)-1)+log(7)(2^(x)-7)=1...

solve
`log_(7)(2^(x)-1)+log_(7)(2^(x)-7)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations: log_(7)(2^(x)-1)+log_(7)(2^(x)-7)=1

Solve :log_(3)(1+log_(3)(2^(x)-7))=1

Solve log_(2)(3x-2)=log_((1)/(2))x

If x satisfies log_(2)(9^(x-1)+7)=2+log_(3^(x))+1

2^(-log_(1/7)7)=2

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Find the value of x satisfying the equation log_((1)/(2))(x-1)+log_((1)/(2))(x+1)-log_((1)/(sqrt(2)))(7-x)=1

log_(7)((2x-6)/(2x-1))>0

Solve :6(log_(x)2-log_(4)x)+7=0

3(log_(7)x+log_(x)7)=10