Home
Class 11
MATHS
log(b)a*log(c)b*log(d)c log(a)d=?...

`log_(b)a*log_(c)b*log_(d)c log_(a)d=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If agt1,bgt1,cgt1,dgt1 then the minimum value of log_(b)a+log_(a)b+log_(d)c+log_(c)d , is

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

prove identity log_(a)N*log_(b)N+log_(b)N*log_(c)N+log_(c)N log_(a)N=(log_(a)N*log_(b)N log_(c)N)/(log_(abc)N)

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

log_(a)a*log_(c)a+log_(c)b*log_(a)b+log_(a)c*log_(b)c=3 (where a,b,c are different positive real nu then find the value of abc.

Find the value of log_(b)^(x)*log_(c)^(b)*log_(d)^(c)dots...log_(n)^(m)*log_(a)^(n)

If log_(b) a. log_(c ) a + log_(a) b. log_(c ) b + log_(a) c. log_(b) c = 3 (where a, b, c are different positive real number ne 1 ), then find the value of a b c.