Home
Class 11
MATHS
log(2)log(2)log(3)log(3)27^3=?...

`log_(2)log_(2)log_(3)log_(3)27^3=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)log_(2)log_(3)81

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

2log_(3)x-log_(x)27<=5

If log_(3)[log_(2){log_(x)(log_(6)216^(3))}]=0 , then log_(3)(3x) = ______.

log_(2)[log_(2) {log_(2)(log_(3) 81)}] =

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

let E=log_(2)(log_(2)3)+log_(2)(log_(3)4)+log_(2)(log_(4)5)+log_(2)(log_(5)6)+log_(2)(log_(6)7)+log_(2)(log_(7)8 then 8^(E) is

If A=((log_(3)1-log_(3)4)(log_(3)9-log_(3)2))/((log_(3)1-log_(3)9)(log_(3)8-log_(3)4)) then find the value of 2(3^(A))

If P =3^sqrt(log_(3)2)-2^(sqrt(log_(2)3))and Q=log_(2)log_(3)log_(2)log _(sqrt(3))81, then

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is