Home
Class 11
MATHS
solve (log(a)x)/(log(a)y)=log(y)x,(y!=1)...

solve
`(log_(a)x)/(log_(a)y)=log_(y)x,(y!=1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1+log_(x)y=log_(2)y

Solve: log_(a)x log_(a)(xyz)=48log_(a)y log_(a)(xyz)=12;log_(a)z log_(a)(xyz)=84

If (log_(5)x)(log_(x)3x)(log_(3x)y)=log_(x)x^(3) then y equals

If (log_(3)x)(log_(x)2x)(log_(2x)y)=log_(x)x^(2) , then what is y equal to?

The value of the determinant ,log_(a)((x)/(y)),log_(a)((y)/(z)),log_(a)((z)/(x))log_(b)((y)/(z)),log_(b)((z)/(x)),log_(b)((x)/(y))log_(c)((z)/(x)),log_(c)((x)/(y)),log_(c)((y)/(z))]|

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

If (log_(x)x)(log_(3)2x)(log_(2x)y)=log_(x^(x^(2)) , then what is the value of y ?