Home
Class 12
MATHS
Find (dy)/(dx)" if "x=t,y=t^(2)+1...

Find `(dy)/(dx)" if "x=t,y=t^(2)+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if x=a t^2, y=2a t .

Find (dy)/(dx) , if x=a t^2 , y=2a t

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)

Find (dy)/(dx) , if x=2a t^2 , y=a t^4

Find (dy)/(dx) when x=4t , y= 4/t

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

FInd (dy)/(dx) If x=2t^(2)+17t-1,y=3t^(4)-8t^(2)+9

If x=f(t), y=g(t) are differentiable functions of parameter 't' then prove that y is a differentiable function of 'x' and (dy)/(dx)=((dy)/(dt))/((dx)/(dt)),(dx)/(dt) ne 0 Hence find (dy)/(dx) if x=a cos t, y= a sin t.

Find dy/dx when x=4t,y=4/t .