Home
Class 12
MATHS
lim(x->oo) (x^2+x+1)/sqrt(x^4+1)=...

`lim_(x->oo) (x^2+x+1)/sqrt(x^4+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) (x-sqrt(x^2+x))

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

Evaluate the following limit: (lim)_(x->oo)sqrt(x+1)-sqrt(x)

Evaluate: lim_(x->oo)((sqrt(x^2+1)- ^3sqrt(x^2+1)) / (4sqrt(x^4+1) -^5sqrt(x^4+1 )))

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

Evaluate lim_(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

8. lim_(x->oo)(sqrt(x^2+x)-x)