Home
Class 10
MATHS
Show that : Cos^4A - Sin^4A = Cos^2A...

Show that :

`Cos^4A - Sin^4A = Cos^2A - Sin^2A = 2 Cos^2A - 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^4A+sin^4A+2sin^2Acos^2A=1

Show : Sin^4theta - Cos^4theta = Sin^2theta - Cos^2theta

Show that : sin^4alpha+cos^4alphage 1/2

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

What is ( cos ^(4) A - sin ^(4) A)/( cos ^(2) A - sin ^(2) A) equal to ?

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 , then prove that (i) sin^4A+sin^4B=2 sin^2Asin^2B (ii) (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

If sin A + sin^2 A = 1 , then the value of cos^2A + cos^4 A is यदि sin A + sin^2 A = 1 , तो cos^2A + cos^4 A का मान है-

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A cos^(2)A)

Prove that: cos^(6)A-sin^(6)A=cos2A(1-(1)/(4)sin^(2)2A)

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A*cos^(2)A)