Home
Class 12
MATHS
Evaluate: (2a-3b+c)^2-(2a+3b-c)^2...

Evaluate: `(2a-3b+c)^2`-`(2a+3b-c)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c) is a. a b//c b. 2a b//c c. a b//3c d. a b//2c

Simplify (a+b)(2a-3b+c)-(2a-3b)c.

Write the following in the expanded form: (i) (a+2b+c)^2 (ii) (2a-3b-c)^2

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c)i s (a b)/c (b) (2a b)/c (c) (a b)/(3c) (d) (a b)/(2c)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

a^2b^3\ X\ 2a b^2 is equal to: (a) 2a^3b^4 (b) 2a^3b^5 (c) 2a b (d) a^3b^5

Find the product: (2a-3b-2c)(4\ a^2+\ 9\ b^2+\ 4\ c^2+\ 6\ a b-6\ b c+4c a)

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc