Home
Class 10
MATHS
Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt...

Simplify `1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Simplify (1/2+1/sqrt2-sqrt3)/(sqrt3-1/sqrt2-1/sqrt3)

Simplify (sqrt3+sqrt2)/(sqrt3+sqrt6)

The simplest value of (1/(sqrt9-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5))

What value will be obtained on simplifying (1)/(sqrt6+sqrt5)+(1)/(sqrt9+sqrt8)+(1)/(sqrt7+sqrt6)+(1)/(sqrt8+sqrt7)+sqrt5?

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5

Simplify (sqrt(2)-1+sqrt(6))/sqrt(5)

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

Simplify sqrt((sqrt(2)+1)/(sqrt(2)-1))