Home
Class 12
MATHS
dy/dx+sqrt((1-y^2)/(1-x^2))=0...

`dy/dx+sqrt((1-y^2)/(1-x^2))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If ysqrt(1-x^2)+xsqrt(1-y^2)=1 show that (dy)/(dx)=-sqrt((1-y^2)/(1-x^2))

If ysqrt(1-x^2)+xsqrt(1-y^2)=1," prove that "(dy)/(dx)= - sqrt((1-y^2)/(1-x^2))dot

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(y+x)+sqrt(y-x)=c ,show that (dy)/(dx)=y/x-sqrt((y^2)/(x^2)-1.)