Home
Class 9
MATHS
If x+z=1,y+z=1,x+y=4 then the value of y...

If `x+z=1,y+z=1,x+y=4` then the value of `y` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If x, y, z are distinct positive numbers such that x+(1)/(y)=y+(1)/(z)=z+(1)/(x) , then the value of xyz is __________

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If x = 2, y = 3 and z = -1, find the values of : (2x-3y+4z)/(3x-z)

If x = 2, y = 3 and z = -1, find the values of : x-:y

If x+y+z=1 , then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2) is , where x,y,z inR^(+)

If the line (x-2)/-1=(y+2)/1=(z+k)/4 is one of the angle bisector of the lines x/1=y/-2=z/3 and x/-2=y/3=z/1 then the value of k is

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x+y+z=1 , then the least value of (1)/(x)+(1)/(y)+(1)/(z) , is