Home
Class 10
MATHS
Prove that (cos^(4)theta-sin^(4)theta)/(...

Prove that `(cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that 2cos^(2)theta-cos^(4)theta+sin^(4)theta=1

Prove that-: cos^4theta/(1-sin^4theta)=(1-sin^2theta)/(1+sin^2theta)

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

If cos^(4)theta-sin^(4)theta=(2)/(13) , find cos^(2)theta-sin^(2)theta+1 .