Home
Class 11
MATHS
Prove that sin^(4)theta+cos^(4)theta=1-(...

Prove that `sin^(4)theta+cos^(4)theta=1-(1)/(2)sin^(2)2 theta=(1)/(2)(1+cos^(2)2 theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(6)theta+cos^(6)theta=1-(3)/(4)sin^(2)2 theta

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

sin^(4) theta + 2 cos^(2) theta (1 - (1)/( sec^(2) theta)) + cos ^(4) theta =

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1