Home
Class 12
MATHS
int0^(pi/2) (x^2+x)dx...

`int_0^(pi/2) (x^2+x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2) sin^2x dx

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

Consider I_1=int_0^(pi//4)e^(x^2)dx ,I_2=int_0^(pi//4)e^x dx ,I_3=int_0^(pi//4)e^(x^2)cosxdx , I_4=int_0^(pi//4)e^(x^2)sinxdx . STATEMENT 1 : I_2> I_1> I_3> I_4 STATEMENT 2 : For x in (0,1),x > x^2a n dsinx >cosx .

int_(0)^(pi//2) x^(2) cos x dx

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

Evaluate the following integral: int_0^(pi//2)x^2cos2x\ dx

Evaluate the following definite integral: int_0^(pi//2)x^2cos2x\ dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(sinx+cos x)dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx