Home
Class 11
MATHS
sqrt(i)*sqrt(-i)=? (A) -i , (B) +-1...

`sqrt(i)*sqrt(-i)=?`
`(A) -i` ,
` (B) +-1`
`(C) (1)/(sqrt(2))`,
`(D) +-sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(i)-sqrt(-i)=sqrt(2)

sqrt(i)+sqrt(-i)=sqrt(2)

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

(iii) (1+i)/(sqrt(2))=sqrt(i)

sqrt(-i) = (1-i)/sqrt2

(i)int(1)/(sqrt(x+1)+sqrt(x+2))dx

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

(5+sqrt(2)i)/(1-2sqrt(i))

(sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(2))