Home
Class 11
MATHS
Find lim(x->oo) (1-1/x)^x...

Find `lim_(x->oo) (1-1/x)^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) (sinx/x) =

lim_(x->oo)(1-x+x.e^(1/n))^n

lim_(x->oo)sin(1/x)/(1/x)

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

Evaluate: lim_(x->oo) (1+1/(a+bx))^(c+dx) , where a,b,c and dare positive

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

Evaluate: ("lim")_(x-oo)x^(1/x)