Home
Class 11
MATHS
Find lim(n->oo) (n^4/(1^3+2^3+3^3+.....+...

Find `lim_(n->oo) (n^4/(1^3+2^3+3^3+.....+n^3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

Let alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4), then alpha is equal to :

Find a for which lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))