Home
Class 10
MATHS
Simplify (1)/(sqrt(3)+sqrt(4))-(1)/(sqrt...

Simplify `(1)/(sqrt(3)+sqrt(4))-(1)/(sqrt(4)+sqrt(5))-(1)/(sqrt(5)+sqrt(6))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

(iii) simplify (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

(1)/(4sqrt(3)-3sqrt(5))

(2)/(sqrt(5)+sqrt(3))-(3)/(sqrt(6)+sqrt(3))+(1)/(sqrt(6)+sqrt(5))=?

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

sqrt(4sqrt(-5)-1)=

Simplify (1)/(sqrt(5)+sqrt(6)-sqrt(11))