Home
Class 12
MATHS
d/dx(e^(x)sinx cosx)...

`d/dx(e^(x)sinx cosx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/dx (e^(sin√x))

d/(dx) (e^(x sin x)) =

d/(dx)(e^xlogsin2x)=

(d) / (dx) e ^ ((x sin x + cos x))

(d)/(dx)[e^(x)sin sqrt(3)x]=

The differentiation of sin x with respect to x is cos x* i.e.(d)/(dx)(sin x)=cos x

Differentiate x^(tanx)+(sinx)^(cosx) w.r.t. x.

Differentiate wrt x : (3e^(x)sinx+a^(x)*logx)

If u=(d)/(dx)(e^(sinx)),v=lim_(hrarr0) (e^(sin(x+h))-e^(sinx))/(h) and w=inte^(sinx)cosxdx, then

If l_(1)=(d)/(dx)(e^(sinx)) l_(2)lim_(hto0) (e^(sin(x+h))-e^(sinx))/(h) l_(3)=inte^(sinx)cosxdx then which one of the following is correct?