Home
Class 12
MATHS
(dy)/(dx)+(y)/(x)=y^(2)x sin x...

`(dy)/(dx)+(y)/(x)=y^(2)x sin x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy/dx)+(y/x)=sin x^(2)

Solution of the differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx))=(x sin^(2)(x^(2)+y^(2)))/(y^(3))

The degree and order of differential equatiion (x+y(dy)/(dx))^((1)/(2))=(x sin x((dy)/(dx))^(2)+y)/(((dy)/(dx))^(3)) is :

(dy) / (dx) = (y) / (x) + sin ((y) / (x))

(dy)/(dx)=(y)/(x)+x sin((y)/(x))

If sin y=x sin(y+a) and (dy)/(dx)=(A)/(1+x^(2)-2x cos a) then the value of A is

sin x(dy)/(dx)+y=y^(2)

(dy) / (dx) -y cos x = 2x sin x

(dy)/(dx)=sin(x-y)

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is