Home
Class 12
MATHS
(dy)/(dx)=sqrt(x+y)...

`(dy)/(dx)=sqrt(x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=sqrt(y-x)

Solve (dy)/(dx)sqrt(1+x+y)=x+y-1

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

x(dy)/(dx)=y+sqrt(x^(2)-y^(2))

solve x(dy)/(dx)-y=sqrt(x^(2)+y^(2))

The solution of (dy)/(dx) = (y+sqrt(x^(2) -y^(2)))/x is

x(dy)/(dx)=y+sqrt(x^(2)-y^(2)), where (y)/(x)=b

Solve : x (dy)/(dx)-y=sqrt(x^(2)+y^(2)), x!=0

Solution of the differential equation (dy)/(dx)=(y+sqrt(x^(2)-y^(2)))/(x) is

Show that the differential equation is x(dy)/(dx)-y=sqrt(x^(2)+y^(2)) , is homogenous and solve it.