Home
Class 10
MATHS
If (sin alpha + cosec alpha)^(2)+(cos al...

If `(sin alpha + cosec alpha)^(2)+(cos alpha+sec alpha)^(2)=k+tan^(2)alpha+cot^(2)alpha`, then k=________

A

9

B

7

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin \alpha + \csc \alpha)^2 + (\cos \alpha + \sec \alpha)^2 = k + \tan^2 \alpha + \cot^2 \alpha\), we will follow these steps: ### Step 1: Expand the left-hand side We start by expanding the squares on the left-hand side using the identity \((a + b)^2 = a^2 + b^2 + 2ab\). \[ (\sin \alpha + \csc \alpha)^2 = \sin^2 \alpha + \csc^2 \alpha + 2 \sin \alpha \csc \alpha \] \[ (\cos \alpha + \sec \alpha)^2 = \cos^2 \alpha + \sec^2 \alpha + 2 \cos \alpha \sec \alpha \] ### Step 2: Substitute \(\csc \alpha\) and \(\sec \alpha\) Recall that \(\csc \alpha = \frac{1}{\sin \alpha}\) and \(\sec \alpha = \frac{1}{\cos \alpha}\). Thus, we can rewrite the expansions: \[ \csc^2 \alpha = \frac{1}{\sin^2 \alpha}, \quad \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \] Now substituting these into our expansions gives: \[ \sin^2 \alpha + \frac{1}{\sin^2 \alpha} + 2 \cdot 1 + \cos^2 \alpha + \frac{1}{\cos^2 \alpha} + 2 \cdot 1 \] ### Step 3: Combine the terms Combining the terms, we have: \[ \sin^2 \alpha + \cos^2 \alpha + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} + 4 \] Using the Pythagorean identity \(\sin^2 \alpha + \cos^2 \alpha = 1\): \[ 1 + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} + 4 \] ### Step 4: Express \(\tan^2 \alpha\) and \(\cot^2 \alpha\) Recall that: \[ \tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha}, \quad \cot^2 \alpha = \frac{\cos^2 \alpha}{\sin^2 \alpha} \] Thus, we can express \(\tan^2 \alpha + \cot^2 \alpha\) as: \[ \tan^2 \alpha + \cot^2 \alpha = \frac{\sin^2 \alpha + \cos^2 \alpha}{\sin^2 \alpha \cos^2 \alpha} = \frac{1}{\sin^2 \alpha \cos^2 \alpha} \] ### Step 5: Substitute back into the equation Now we substitute this back into our equation: \[ 1 + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} + 4 = k + \frac{1}{\sin^2 \alpha \cos^2 \alpha} \] ### Step 6: Simplify the equation Rearranging gives: \[ 5 + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} = k + \frac{1}{\sin^2 \alpha \cos^2 \alpha} \] ### Step 7: Isolate \(k\) Now we isolate \(k\): \[ k = 5 + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} - \frac{1}{\sin^2 \alpha \cos^2 \alpha} \] ### Step 8: Use the identity Using the identity \(\frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} = \tan^2 \alpha + \cot^2 \alpha + 2\): \[ k = 5 + 2 = 7 \] Thus, the value of \(k\) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

(sin alpha+cos ec alpha)^(2)+(cos alpha+sec alpha)^(2)=tan^(2)alpha+cot^(2)alpha+7

(sin alpha+csc alpha)^(2)+(cos alpha+sec alpha)^(2)-7=

If (sinalpha+"cosec"alpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha+cot^(2)alpha then the value of k is

(sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

(x tan alpha+y cot alpha)(x cot alpha+y tan alpha)-4xy cos^(2)2 alpha=

show that (alpha+y cot alpha)(x cot alpha+y tan alpha)=(x+y)^(2)+4xy cot^(2)2 alpha

(sin alpha)/(1+cos alpha)+(1+cos alpha)/(sin alpha)=2cosec alpha

If sin alpha+cos alpha=sqrt(2)cos alpha then show that tan2 alpha=1