Home
Class 10
MATHS
((sqrt(3)+2cosA)/(1-2sinA))^(-3)+((1+2si...

`((sqrt(3)+2cosA)/(1-2sinA))^(-3)+((1+2sinA)/(sqrt(3)-2cosA))^(-3)=`____

A

1

B

`sqrt(3)`

C

`0`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \left(\frac{\sqrt{3} + 2\cos A}{1 - 2\sin A}\right)^{-3} + \left(\frac{1 + 2\sin A}{\sqrt{3} - 2\cos A}\right)^{-3}, \] we will evaluate it step by step. ### Step 1: Substitute \( A = 90^\circ \) First, we substitute \( A = 90^\circ \) into both fractions. - For \( \cos 90^\circ = 0 \) and \( \sin 90^\circ = 1 \): \[ \frac{\sqrt{3} + 2\cos 90^\circ}{1 - 2\sin 90^\circ} = \frac{\sqrt{3} + 2 \cdot 0}{1 - 2 \cdot 1} = \frac{\sqrt{3}}{1 - 2} = \frac{\sqrt{3}}{-1} = -\sqrt{3}. \] - For the second fraction: \[ \frac{1 + 2\sin 90^\circ}{\sqrt{3} - 2\cos 90^\circ} = \frac{1 + 2 \cdot 1}{\sqrt{3} - 2 \cdot 0} = \frac{1 + 2}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}. \] ### Step 2: Evaluate the powers Now we can substitute these values back into the original expression: \[ \left(-\sqrt{3}\right)^{-3} + \left(\sqrt{3}\right)^{-3}. \] Calculating each term: 1. \((- \sqrt{3})^{-3} = -\frac{1}{(\sqrt{3})^3} = -\frac{1}{3\sqrt{3}}\). 2. \((\sqrt{3})^{-3} = \frac{1}{(\sqrt{3})^3} = \frac{1}{3\sqrt{3}}\). ### Step 3: Combine the results Now, we combine the two results: \[ -\frac{1}{3\sqrt{3}} + \frac{1}{3\sqrt{3}} = 0. \] ### Final Answer Thus, the final result is: \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

Prove that : (cosA)/(1+sin A) +(1+sinA)/(cosA)=2 sec A

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) = ?

CosA/(1-SinA) + SinA/(1-CosA) + 1 =

(1+sinA-cosA)/(1+sinA+cosA)=

If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/(sqrt(1+tan^(2)A))-2tanA cotA. is always equal to

Prove that (1+cosA)/(sinA) + (sinA)/(1+cosA) = 2/(sin A)

((2sinA)(1+sinA))/(1+sinA+cosA) is equal to: