Home
Class 10
MATHS
If A+B=90^(@), then (tanAtanB+tanAcotB...

If `A+B=90^(@)`, then
`(tanAtanB+tanAcotB)/(sinAsecB)-(sin^(2)B)/(cos^(2)A)`
is equal to ____.

A

`cot^(2)A`

B

`cot^(2)B`

C

`-tan^(2)A`

D

`-cot^(2)A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\tan A \tan B + \tan A \cot B) / (\sin A \sec B) - \frac{\sin^2 B}{\cos^2 A}\) given that \(A + B = 90^\circ\), we can follow these steps: ### Step 1: Use the identity for angles Since \(A + B = 90^\circ\), we can express \(A\) in terms of \(B\): \[ A = 90^\circ - B \] ### Step 2: Substitute \(\tan A\) and \(\sin A\) Using the co-function identities: \[ \tan A = \tan(90^\circ - B) = \cot B \] \[ \sin A = \sin(90^\circ - B) = \cos B \] ### Step 3: Substitute into the expression Now substituting \(\tan A\) and \(\sin A\) into the original expression: \[ \frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A} \] becomes: \[ \frac{\cot B \tan B + \cot B \cot B}{\cos B \sec B} - \frac{\sin^2 B}{\cos^2(90^\circ - B)} \] ### Step 4: Simplify \(\tan B\) and \(\sec B\) Recall that: \[ \cot B = \frac{1}{\tan B} \quad \text{and} \quad \sec B = \frac{1}{\cos B} \] Thus, we can simplify: \[ \frac{\cot B \tan B + \cot^2 B}{\cos B \cdot \frac{1}{\cos B}} - \frac{\sin^2 B}{\sin^2 B} \] This simplifies to: \[ \cot B + \cot^2 B - 1 \] ### Step 5: Use the identity for cotangent Using the identity \(\cot^2 B + 1 = \csc^2 B\), we can rewrite: \[ \cot B + \cot^2 B - 1 = \cot B + (\csc^2 B - 1) - 1 \] This simplifies to: \[ \cot B + \csc^2 B - 2 \] ### Step 6: Final simplification Since \(\csc^2 B = 1 + \cot^2 B\), we have: \[ \cot B + (1 + \cot^2 B) - 2 = \cot B + \cot^2 B - 1 \] Thus, the final expression simplifies to: \[ \cot^2 B \] ### Conclusion The final result is: \[ \cot^2 B \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

If A+B is 90^(@), then (tan A*tan B+tan A*cot B)/(sin A*sec B)-(sin^(2)B)/(cos^(2)A) is equal to:

If A+B=90^(@) ,then sqrt((tanA.tanB+tanA.cotB)/(sinA.secB)-(sin^(2)B)/(cos^(2)A)) =?

If A+B=90^@ , then : tanA.tanB=...

If A+B=90^(0), prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If A+B=90^(@); prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If A and B are complementary angles, find the value of sqrt((tanAtanB+cotAcotB)/(sinAsecB)-(sin^(2)B)/(cos^(2)A))

(sin(B+A)+cos(B-A))/(sin(B-A)+cos(B+A)) is equal to

(cos A+ cos B) ^(2) + (sin A-sin B) ^(2) is equal to

If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to