Home
Class 10
MATHS
If sin theta=cos theta, then 2tan^(2)the...

If `sin theta=cos theta`, then `2tan^(2)theta+sin^(2)theta-1=`_____

A

`(-3)/2`

B

`3/2`

C

`2/3`

D

`(-2)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\tan^2\theta + \sin^2\theta - 1\) given that \(\sin\theta = \cos\theta\), we can follow these steps: ### Step 1: Identify the angle Since \(\sin\theta = \cos\theta\), we know that this equality holds true when \(\theta = \frac{\pi}{4}\) or \(45^\circ\). ### Step 2: Calculate \(\tan\theta\) Using the angle \(\theta = \frac{\pi}{4}\): \[ \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 \] Thus, \[ \tan^2\theta = 1^2 = 1 \] ### Step 3: Calculate \(\sin^2\theta\) For \(\theta = \frac{\pi}{4}\): \[ \sin\theta = \frac{1}{\sqrt{2}} \implies \sin^2\theta = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] ### Step 4: Substitute values into the expression Now, substitute \(\tan^2\theta\) and \(\sin^2\theta\) into the expression \(2\tan^2\theta + \sin^2\theta - 1\): \[ 2\tan^2\theta + \sin^2\theta - 1 = 2(1) + \frac{1}{2} - 1 \] ### Step 5: Simplify the expression Now simplify: \[ = 2 + \frac{1}{2} - 1 \] \[ = 2 - 1 + \frac{1}{2} = 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2} \] ### Final Answer Thus, the value of \(2\tan^2\theta + \sin^2\theta - 1\) is \(\frac{3}{2}\). ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

If sin theta=cos theta then 2tan theta+cos^(2)theta=

If theta is an acute angle and sin theta=cos theta, find the value of 2tan^(2)theta+sin^(2)theta-1

If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2) theta -1 is equal to

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

Taking theta=30^(@) , verify each of the following (i) sin 2theta=2sin theta cos theta (ii) cos theta=2cos^(2)theta-1=1-2sin^(2)theta (iii) tan2theta=(2tantheta)/(1-tan^(2)theta)

If tan theta=(12)/(13) then value of (2sin theta cos theta)/(cos^(2)theta-sin^(2)theta) is

(sin theta-cos theta)/(sin theta+cos theta)+(sin theta+cos theta)/(sin theta-cos theta)=(2)/((2sin^(2)theta-1))

(2sin theta*cos theta-cos theta)/(1-sin theta+sin^(2)theta-cos^(2)theta)=cot theta

Prove each of the following identities : (sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = (2) /((sin^(2) theta - cos^(2) theta)) = (2) /((2sin^(2) theta -1))