Home
Class 10
MATHS
If x=r sin theta cos phi, y=r sin theta ...

If `x=r sin theta cos phi, y=r sin theta sin phi` and `z=r cos theta` then

A

`x^(2)+y^(2)+z^(2)=r^(2)`

B

`x^(2)+y^(2)-z^(2)=r^(2)`

C

`x^(2)-y^(2)+z^(2)=r^(2)`

D

`z^(2)+y^(2)-x^(2)=r^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the relationship between the variables \(x\), \(y\), and \(z\) given by the equations: 1. \(x = r \sin \theta \cos \phi\) 2. \(y = r \sin \theta \sin \phi\) 3. \(z = r \cos \theta\) We want to determine which of the given options is true. Let's go through the steps to find the correct relationship. ### Step 1: Square Each Equation We start by squaring each of the equations: - \(x^2 = (r \sin \theta \cos \phi)^2 = r^2 \sin^2 \theta \cos^2 \phi\) - \(y^2 = (r \sin \theta \sin \phi)^2 = r^2 \sin^2 \theta \sin^2 \phi\) - \(z^2 = (r \cos \theta)^2 = r^2 \cos^2 \theta\) ### Step 2: Add the Squared Equations Now, we add the squared equations together: \[ x^2 + y^2 + z^2 = r^2 \sin^2 \theta \cos^2 \phi + r^2 \sin^2 \theta \sin^2 \phi + r^2 \cos^2 \theta \] ### Step 3: Factor Out Common Terms On the right-hand side, we can factor out \(r^2\): \[ x^2 + y^2 + z^2 = r^2 \left(\sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi + \cos^2 \theta\right) \] ### Step 4: Simplify the Expression Now, we can simplify the expression inside the parentheses. Notice that: \[ \sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi = \sin^2 \theta (\cos^2 \phi + \sin^2 \phi) \] Using the Pythagorean identity \(\cos^2 \phi + \sin^2 \phi = 1\), we get: \[ \sin^2 \theta (\cos^2 \phi + \sin^2 \phi) = \sin^2 \theta \cdot 1 = \sin^2 \theta \] Thus, we can rewrite our equation as: \[ x^2 + y^2 + z^2 = r^2 (\sin^2 \theta + \cos^2 \theta) \] ### Step 5: Apply Another Pythagorean Identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ x^2 + y^2 + z^2 = r^2 \cdot 1 = r^2 \] ### Conclusion We conclude that: \[ x^2 + y^2 + z^2 = r^2 \] This matches with option 1. Therefore, the correct answer is: **Option 1: \(x^2 + y^2 + z^2 = r^2\)**.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2

If x = r cos theta cos phi, y = r cos theta sin phiz = r sin theta, then x ^ (2) + y ^ (2) + z ^ (2) = (i) r ^ (2) (ii ) y ^ (2) (iii) x ^ (2) (iv) z ^ (2)

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

If x=gamma sin theta cos phi, y=gamma sin theta sin phi, z =gamma cos theta , what is the eliminant of theta and phi ?

If x = a sec theta cos phi, y = b sec theta sin phi, z = c tan theta , then, the value of x^2 /a^2 + y^2/b^2 -z^2/c^2 is :

If =a(1+cos theta cos phi),y=b(1+cos theta sin phi) and z=c(1+sin theta) then which of the following is correct

If x=r cos theta,y=r sin theta, show that

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

If cos theta+cos phi=a and sin theta - sin phi=b , then: 2cos(theta + phi) =

If sin theta+ sin phi = a, cos theta + cos phi = b, find the value of sin ( theta+phi) and cos 2theta + cos 2phi where |b|>|a|