Home
Class 10
MATHS
(1+tan^(2)A)+(1+1/(tan^(2)A))is equal to...

`(1+tan^(2)A)+(1+1/(tan^(2)A))`is equal to

A

`1/(sin^(2)A-sin^(4)A)`

B

`1/(sin^(2)A+sin^(4)A)`

C

`(cos^(2)A)/(sinA+sin^(2)A)`

D

`(cos^(2)A)/(sinA-sin^(2)A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \tan^2 A) + \left(1 + \frac{1}{\tan^2 A}\right)\), we will simplify it step by step. ### Step 1: Rewrite the expression We start with the given expression: \[ (1 + \tan^2 A) + \left(1 + \frac{1}{\tan^2 A}\right) \] ### Step 2: Combine the terms We can combine the constants: \[ 1 + \tan^2 A + 1 + \frac{1}{\tan^2 A} = 2 + \tan^2 A + \frac{1}{\tan^2 A} \] ### Step 3: Use the identity for \(\tan^2 A\) We know from trigonometric identities that: \[ 1 + \tan^2 A = \sec^2 A \] Thus, we can write: \[ \tan^2 A + \frac{1}{\tan^2 A} \] ### Step 4: Find a common denominator To combine \(\tan^2 A + \frac{1}{\tan^2 A}\), we find a common denominator: \[ \tan^2 A + \frac{1}{\tan^2 A} = \frac{\tan^4 A + 1}{\tan^2 A} \] ### Step 5: Substitute back into the expression Now we substitute this back into our expression: \[ 2 + \frac{\tan^4 A + 1}{\tan^2 A} \] ### Step 6: Combine the terms We can rewrite it as: \[ \frac{2\tan^2 A + \tan^4 A + 1}{\tan^2 A} \] ### Step 7: Factor the numerator The numerator \(2\tan^2 A + \tan^4 A + 1\) can be factored: \[ \tan^4 A + 2\tan^2 A + 1 = (\tan^2 A + 1)^2 \] ### Step 8: Final expression Thus, we have: \[ \frac{(\tan^2 A + 1)^2}{\tan^2 A} \] ### Step 9: Substitute back the identity Now substituting back \(\tan^2 A + 1 = \sec^2 A\): \[ \frac{\sec^4 A}{\tan^2 A} \] ### Step 10: Final simplification Using the identity \(\tan^2 A = \frac{\sin^2 A}{\cos^2 A}\) and \(\sec^2 A = \frac{1}{\cos^2 A}\): \[ \frac{1}{\sin^2 A} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{\sin^2 A} - \sin^4 A \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

(1+ tan ^(2) A)/( 1 + cot^(2) A) equals

(2tan60^(@))/(1+tan^(2)60^(@)) is equal to :

2 tan^(-1) (-2) is equal to

If tantheta+(1)/(tantheta)=2 then the value of tan^(2)theta+(1)/(tan^(2)theta) is equal to :

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

If tan A = (1 - cos B)/(sin B), then what is (2 tan A )/( 1 - tan ^(2) A ) equal to ?

(1-tan^(2)(45^(@)-A))/(1+tan^(2)(45^(@)-A)) is equal to

(tan^(2)(2 theta)-tan^(2)theta)/(1-tan^(2)(2 theta)tan^(2)theta) is equal to-

(1)/(2)tan^(-1)((12)/(5)) is equal to