Home
Class 10
MATHS
Which of the folloiwng is true? a. cos...

Which of the folloiwng is true?`
a. cos thetasin theta-(sin theta cos (90^(@)-theta)cos theta)/(sec (90^(@)-theta))`
`-(cos theta sin (90^(@)-theta)sin theta)/(cosec(90^(@)-theta))=0`
b. If A and B are complementary angles, then `sinA=sqrt((cosA)/(sinB)-cosAsinB)`

A

Only a

B

Only b

C

Neither a nor b

D

Both a and b

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given statements is true, we will analyze both parts step by step. ### Part A: We need to simplify the expression: \[ \cos \theta \sin \theta - \frac{\sin \theta \cos(90^\circ - \theta) \cos \theta}{\sec(90^\circ - \theta)} - \frac{\cos \theta \sin(90^\circ - \theta) \sin \theta}{\csc(90^\circ - \theta)} = 0 \] 1. **Substituting Trigonometric Identities**: - We know that \(\cos(90^\circ - \theta) = \sin \theta\) and \(\sin(90^\circ - \theta) = \cos \theta\). - Also, \(\sec(90^\circ - \theta) = \frac{1}{\cos(90^\circ - \theta)} = \frac{1}{\sin \theta}\) and \(\csc(90^\circ - \theta) = \frac{1}{\sin(90^\circ - \theta)} = \frac{1}{\cos \theta}\). Substituting these into the expression gives: \[ \cos \theta \sin \theta - \frac{\sin \theta \sin \theta \cos \theta}{\frac{1}{\sin \theta}} - \frac{\cos \theta \cos \theta \sin \theta}{\frac{1}{\cos \theta}} = 0 \] 2. **Simplifying the Expression**: - This simplifies to: \[ \cos \theta \sin \theta - \sin^2 \theta \cos \theta - \cos^2 \theta \sin \theta = 0 \] 3. **Factoring the Expression**: - We can factor out \(\sin \theta \cos \theta\): \[ \sin \theta \cos \theta (1 - \sin \theta - \cos \theta) = 0 \] 4. **Using the Pythagorean Identity**: - We know that \(\sin^2 \theta + \cos^2 \theta = 1\), thus \(1 - \sin^2 \theta - \cos^2 \theta = 0\). 5. **Conclusion for Part A**: - Since \(\sin \theta \cos \theta\) can be zero or \(1 - \sin^2 \theta - \cos^2 \theta = 0\), the expression equals zero. Thus, **Part A is true**. ### Part B: We need to evaluate the statement: \[ \sin A = \sqrt{\frac{\cos A}{\sin B} - \cos A \sin B} \] where \(A\) and \(B\) are complementary angles (\(A + B = 90^\circ\)). 1. **Using Complementary Angle Identities**: - Since \(B = 90^\circ - A\), we have: \[ \sin B = \cos A \] 2. **Substituting into the Expression**: - Substitute \(\sin B\) into the equation: \[ \sin A = \sqrt{\frac{\cos A}{\cos A} - \cos A \cos A} \] - This simplifies to: \[ \sin A = \sqrt{1 - \cos^2 A} \] 3. **Using the Pythagorean Identity**: - We know that \(1 - \cos^2 A = \sin^2 A\), thus: \[ \sin A = \sqrt{\sin^2 A} \] - This implies \(\sin A = |\sin A|\). Since \(\sin A\) can be negative depending on the angle, the equality does not hold for all angles. 4. **Conclusion for Part B**: - Thus, **Part B is false**. ### Final Conclusion: - The true statement is **Part A**.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos

Similar Questions

Explore conceptually related problems

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Find the value of sin theta xxcos (90-theta) +cos thetaxx sin (90-theta) .

Prove that (cos theta cos(90^(@)-theta))/(cot(90^(@)-theta))=cos^(2)theta

(cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?

Prove that (cos(90^(0)+theta)sec(-theta)tan(180^(@)-theta))/(sec(360^(@)-theta)sin(180^(@)+theta)cot(90^(@)-theta))=-1