Home
Class 12
MATHS
Show that : lim( n -> oo ) ( n^2 + 1...

Show that :

`lim_( n -> oo ) ( n^2 + 1 )/n^2 = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that, lim_(n to oo)((1)/(n + 1)+(1)/(n+2)+…+(1)/(6n))=log 6 .

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo) (n(n+1))/(n^(2))= ________.

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2